Southern California Hypocenter Relocation with Waveform Cross- Correlation, Part 1: Results Using the Double-Difference Method

نویسندگان

  • Egill Hauksson
  • Peter Shearer
چکیده

We present the results of relocating 327,000 southern California earthquakes that occurred between 1984 and 2002. We apply time-domain waveform cross-correlation for P and S waves between each event and 100 neighboring events identified from the catalog based on a 3D velocity model. To simplify the computation, we first divide southern California into five polygons, such that there are 100,000 events or less in each region. The polygon boundaries are chosen to lie in regions of sparse seismicity. We calculate and save differential times from the peaks in the cross-correlation functions and use a spline interpolation method to achieve a nominal timing precision of 0.001 sec. These differential times, together with existing Pand S-phase picks, are input to the double-difference program of Waldhauser and Ellsworth (2000, 2002) to calculate refined hypocenters. We divide the southern California region into grid cells and successively relocate hypocenters within each grid cell. The overall resulting pattern of seismicity is more focused than the previously determined pattern from 1D or 3D models. The new improved locations are more clustered, in many cases by a factor of two or three, and often show clear linear alignments. In particular, the depth distribution is improved and less affected by layer boundaries in velocity models or other similar artifacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods

[1] We simultaneously reanalyzed two decades (1984–2003) of the digital seismic archive of Northern California using waveform cross-correlation (CC) and double-difference (DD) methods to improve the resolution in hypocenter locations in the existing earthquake catalog generated at the Northern California Seismic Network (NCSN) by up to three orders of magnitude. We used a combination of 3 billi...

متن کامل

Southern California Hypocenter Relocation with Waveform Cross- Correlation, Part 2: Results Using Source-Specific Station Terms and Cluster Analysis

We obtain precise relative relocations for more than 340,000 southern California earthquakes between 1984 and 2002 by applying the source-specific station-term (SSST) method to existing Pand S-phase picks and a differential location method to about 208,000 events within similar-event clusters identified with waveform cross-correlation. The entire catalog is first relocated by using existing pha...

متن کامل

Applying a three - dimensional velocity model , waveform cross correlation , and cluster analysis to locate southern California seismicity from 1981 to 2005

[1] We compute high-precision earthquake locations using southern California pick and waveform data from 1981 to 2005. Our latest results are significantly improved compared to our previous catalog by the following: (1) We locate events with respect to a new crustal P and S velocity model using three-dimensional ray tracing, (2) we examine six more years of waveform data and compute cross-corre...

متن کامل

Regional and teleseismic double-difference earthquake relocation using waveform cross-correlation and global bulletin data

[1] We have developed a double-difference algorithm to relocate earthquakes recorded at global seismic networks, using differential arrival times for first and later arriving regional and global phases to invert for the vectors connecting the hypocenters. Differential times are formed from global seismic bulletins and are accurately measured on similar seismograms by time domain waveform cross ...

متن کامل

An Automatic, Adaptive Algorithm for Refining Phase Picks in Large Seismic Data Sets

We have developed an adaptive, automatic, correlationand clusteringbased method for greatly reducing the degree of picking inconsistency in large, digital seismic catalogs and for quantifying similarity within, and discriminating among, clusters of disparate waveform families. Innovations in the technique include (1) the use of eigenspectral methods for cross-spectral phase estimation and for p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005